

Instytut Techniki Budowlanej 00-611 Warszawa, ul. Filtrowa 1

Application of 3D digital image correlation for calibration of FEM model of graded metal plate arches

Krzysztof Malowany¹, Artur Piekarczuk², Przemysÿaw Wich², Maÿgorzata Kujawiska¹, Marcin Malesa¹

¹Warsaw University of Technology, Institute of Micromechanics and Photonics ²Building Research Institute

- Motivation and goal
- Digital Image Correlation (DIC)
- FEM model calibration steps
- Analysis of the segments
- Measurement data
- Future works

//

Motivation and goal

- Formal regulation
 <u>guidelines for granting European technical</u>
 <u>approvals</u>
- Admission for public use

Digital Image Correlation

Universal and high accuracy method for non-contact measurements of displacements and strains

Correction of stiffness matrices

- 1. Analysis of the segments (1 m high) of different kinds of graded metal plate arches (in progress)
- 2. Laboratory analysis of the full-dimensional elements
- 3. In-situ analysis of the multi-segment, full-dimensional object

Measurements of the segments (1 m high) of different kinds of graded metal plate arches, with eccentricity of force load

Measurement setup:

- Actuators (maximum load 100 kN)
- [~] AVT Pike F-1600 (16 MPx)
- LED lamps (100 MW) with softbox

W(z) [mm]

20

								F [kN]					
						00	J	10	15	20	25	30	35
1.5	1.4	1.3	1.2	1.1		100 Coordin							
2.5	2.4	2.3	2.2	2.1		200 300 Hes of the line fi							
3.5	3.4	3.3	3.2	3.1	j	400 5(
						0 -2	0 1	4 6	5		1	14	

Analysis of the full-dimensional elements

Piekarczuk A, Malesa M, Kujawinska M, Malowany K (2012), Application of Hybrid FEM-DIC Method for Assessment of Low Cost Building Structures, Experimental Mechanics, 52 (9), pp. 1297-1311

Analysis of the full-dimensional elements

In-situ measurements

internal setup of multi-camera 3D DIC system

Thank you for your attention