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1.  Reynolds Averaged Navier-Stokes (RANS) closure models 

2.  Statistical modelling of simulation error 

•  Approach #1: Kennedy + O’Hagan 

•  Approach #2: Closure model coefficients 

3.  A predictive capability with Bayesian Scenario Averaging 

Framework: Flat-plate boundary-layers (with BL-code) 

Overview 
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•  Incompressible Navier-Stokes equations: 

 

•  Reynolds averaged: 

Navier-Stokes equations 
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•  k-eps models: 

•  Launder-Sharma: 

•  Jones-Launder:  

Closure models for:  

=> θ 

−ρu�u�



5 Richard Dwight 

•  E.g. Isotropic decaying turbulence 

•  Equations reduce to 

•  With exact solution 

•  Values for           vary a lot: 

•  Commonly used 1.92  
•  RNG k-eps 1.68 
•  k-tau 1.83 
•  Best fit to data (n=1.3) 1.77  

Model coefficients are not sacred! 
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1.  Find a flow of interest (scenario S) 

2.  Preparation stage 
•  Collect experimental data on the flow (z) 

•  Calibrate closure model (M) given z => coefficients (θ*) 

3.  Prediction stage 
•  Apply M using θ* to a new flow (no exp. data available) 

Approach #1: Bayesian calibration of 
coefficients (a la Kennedy+O’Hagan) 

* Kennedy and O’Hagan (2001). Bayesian Calibration of Computer Models. 
   Journal of the Royal Society B. 63(3). 
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Statistical model 
 

Relate z to θ:





For specified θ we can calculate the probability of any z. 

I.e.              at a cost of one evaluation of 

 

Use Markov-Chain Monte-Carlo to sample distribution of  
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Bayesian calibration step 
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Bayesian calibration 

Bayes theorem: 

 

Need to specify two probability distributions: 

Prior                                    - existing knowledge of θ 
      (possibly non-informative) 

 

Likelihood                           - chance of observing z given θ 
      need statistical model 
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•  Class of flows: flat-plate 
boundary-layers 

•  Data: 1968 AFOSR-IFP-
Stanford conference 

•  Solver: Wilcox EDDYBL, 
multiple turb. models   
(1 solve ~5 sec) 

Framework: Flat-plate BLs 
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Calibration Results - k-ε 
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Calibration Results - k-ε 
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Calibration Results - k-eps 
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Prediction – Kennedy + O’Hagan – k-ε 

•  New BL flow outside of 
set of scenarios S 

•  Measurements used for 
validation only 

•  90% credible intervals 
based on posterior 
coefficient pdfs 



15 Richard Dwight 

•  Define a class of flows of interest (flat-plate BLs, varying pressure-grads) 

•  Preparation stage 

•  Collect data (               ) for some scenarios (               ) in class 
(1968 AFOSR-IFP-Stanford conference) 

•  Calibrate multiple closure models (                 ) for each scenario to 
get coefficient posteriors (        ) (k-w, k-eps, SA, BL)  

•  Prediction stage 

•  Build posterior predictive distribution for QoI Δ in a new scenario, 
conditioned on all data via all models and scenarios. 

Approach #2: Inadequacy captured 
by closure coefficients 

θ�i,k
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Bayesian model averaging - prediction 
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Bayesian scenario averaging –  
Posterior predictive distribution 

p(∆|z,M,S) = . . .
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Bayesian scenario averaging –  
Smart scenario weighting 
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Bayesian scenario averaging –  
Posterior predictive distribution 

p(∆|z,M,S) = . . .



20 Richard Dwight 

Conclusions 

1.  Capturing model inadequacy with K+O’Hagan-like terms 
lead to much too large prediction variance. 

2.  Large variability of closure coefficients seen. 

3.  No single coefficient values reproduce truth even for 
very limited classes of flow (and for any model!) 

4.  Capturing inadequacy within model makes more sense. 

5.  RANS-model error estimate proposed. 

 
* Edeling, Cinnella, Dwight (2013). Bayesian Estimates of Parameter 
Variability in the k-epsilon turbulence model.  Journal of Computational 
Physics. (online) 
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Thank you 
 for your attention! 


