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The Question 
At the most general level: 

Models often aren’t exact replicas of their 
target systems.  

How bad is it if out model is not an exact 
replica of the target system?  
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The Question 
At the most general level: 

Models often aren’t exact replicas of their 
target systems.  

How bad is it if out model is not an exact 
replica of the target system?  

à It’s pretty bad. 
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The Question 
A bit more specifically: 
 

A dynamical model has structural model 
error (SME) if its time evolution is 
relevantly different from that of the target 
system, possibly due to simplifications and  
idealisations. 
 

Question: what are the consequencs of 
SME for a model’s predictive capacity? 

 



10 

Take-Home Message - Part 1 
If chaotic models have even the slightest 
SME, their capacity to make meaningful 
forecasts is seriously compromised. 
 

This has dramatic consequences for our 
ability to make the kind of forecasts about 
the future that policy makers would like to 
have.  
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Attention: not the same old story.  
 

So far chaos has been studied in 
connection with uncertainty about initial 
conditions. 
 

We ask what happens if we are uncertain 
about the correct model structure. 
 

These are completely different problems! 
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Butterfly effect:  
Error in initial 
conditions 
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Butterfly effect:  
Error in initial 
conditions 

Hawkmoth Effect: 

Error in the model 
structure (equations) 

(Erica Thompson) 
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Take-Home Message – Part 2 
We can mitigate against the butterfly effect 
by making probabilistic predictions rather 
than point forecasts.  
This route is foreclosed in the case of the 
hawkmoth effect: nothing can mitigate 
against that effect! 
So structural model error and not 
uncertainty in the initial conditions is what 
truly limits predictive power. 
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Or: butterflies are pretty; hawkmoths are ugly. 
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Let’s get started 
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A Primer on Models 

Dynamical system 
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A Primer on Models 

Dynamical system 
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Simple example: stone falling from tower 
          

Position x 

momentum p 
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Simple example: stone falling from tower 
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Lebesgue 

Measure 
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Difficult example: global climate model 
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Difficult example: global climate model 
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Difficult example: global climate model 
          

),,( µφtX

Literally 10,000s of climate 
variables for the entire world 
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Difficult example: global climate model 
          

),,( µφtX

Literally 10,000s of climate 
variables for the entire world 
 

The evolution of these 
variables over time 
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Difficult example: global climate model 
          

),,( µφtX

Literally 10,000s of climate 
variables for the entire world 
 

The evolution of these 
variables over time 
 

The so-called invariant 
measure of the dynamics 
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Locating the Issues 
Dynamical system 
 
 

),,( µφtX



30 

Locating the Issues 
Dynamical system 
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Locating the Issues 
Dynamical system 
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Initial Condition Error (ICE) 
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Locating the Issues 
Dynamical system 
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Initial Condition Error (ICE)  
 



Locating the Issues 

Initial condition error 
 
 
Butterfly Effect 

33 
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SME: the time evolution of the model differ 
from the time evolution of the system 
under study: 

φt
S = φt

M +δ t

True dynamics      Model     “Difference” 

Locating the Issues 
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Locating the Issues 
Dynamical system 
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Locating the Issues 
Dynamical system 
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Locating the Issues 
Dynamical system 
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Locating the Issues 
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Structural Model Error 
 
 
Hawkmoth Effect 
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ICE versus SME 
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Meet Laplace’s Demon 

1.  Unlimited computational 
power 

2.  Unlimited dynamical 
knowledge 

3.  Unlimited observational 
power 

(Laplace 1814) 
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The Demon knows everything.  
In Laplace’s own words: ‘nothing 
would be uncertain and the future, 
as the past, would be present to 
[his] eyes’.  
 

So the Demon’s model of the 
world’s climate would be 
trustworthy because it provides the 
full truth.  
 

But what happens if we are less 
capable than the Demon? 
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1.  Unlimited computational 
power 

2.  Unlimited dynamical 
knowledge 

3.  No unlimited 
observational power 

Meet the Senior Apprentice 
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1.  Unlimited computational 
power 

2.  Unlimited dynamical 
knowledge 

3.  No unlimited 
observational power 

Meet the Senior Apprentice 

In other words, the Senior Apprentice 
only has noisy observations.  
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How could the limitation of 
not having unlimited 
observational power be 
overcome?  
 

Reply:  

Initial Condition Ensemble 
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That is, she puts a probability distribution 
over an approximate initial condition. 

X 
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Prediction? Time Evolution?  
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Generate probabilistic predictions by 
moving the initial probability distribution 
forward in time:  
 

Time 

X 
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Implications for prediction? They figure 
that in non-linear systems we expect the 
probability distribution to disperse. 
 



49 

Implications for prediction? They figure 
that in non-linear systems we expect the 
probability distribution to disperse. 
 Time 
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Implications for prediction? They figure 
that in non-linear systems we expect the 
probability distribution to disperse. 
 Time 

X 
Time 

X 
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Why dispersion?  
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Why dispersion?  



Distributions become uninformative as 
time passes, but they do not become 
misleading. 
 

The Senior Apprentice realises that this is 
the limitation that she has to accept. 
 

It is the price to pay for not having 
unlimited observational power.  
 

53 
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Or: butterflies are pretty; hawkmoths are ugly. 
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Meet the Freshman Apprentice 

1.  Unlimited computational 
power 

2.  No unlimited dynamical 
knowledge 

3.  No unlimited 
observational power 
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The Freshman 
Apprentice now 
claims he can do 
everything that the 
Senior Apprentice 
can do, his 
additional 
limitation 
notwithstanding 
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Recall: The Freshman can’t formulate the 
exact dynamics of a system. 
Reaction: Distortions and idealisations of 
all kind are acceptable as long as the 
resulting model is close enough to the 
truth.  
 

This is the closeness-to-goodness link. 
 

à  This is a crucial part! 
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That is, the Freshman claims that his 
probabilistic predications are as good as 
the Senior Apprentice’s because he can 
rely on the closeness to goodness link.  
 

Notice: Real-world scientists bear striking 
similarities to the Apprentice. 
 

Question: is the Apprentice right?  
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 No way! 



60 
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Population density: 
 
ρ = # fish / m3

#maxfish / m3
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Population density: 
 
ρ = # fish / m3

#maxfish / m3

ρ ∈ 0,1[ ]Hence:  
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Population density: 
 
ρ = # fish / m3

#maxfish / m3

ρ ∈ 0,1[ ]Hence:  

ρt+1 = 4ρt (1− ρt )
Model: 
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where ε = 0.1 

 
ρt+1 = 4 ρt (1− ε )(1− ρt )+ ε 16

5
ρt (1− 2 ρt

2 + ρt
3)
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The Apprentice remains defiant: 
 
                                 

Green – Apprentice and Red - Demon 
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Mathematically: 
 
                                + small perturbation 
 
  
 
 
 

)1(41 ttt ρρρ −=+

 
ρt+1 = 4 ρt (1− ε )(1− ρt )+ ε 16

5
ρt (1− 2 ρt

2 + ρt
3)
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Mathematically: 
 
                                + small perturbation 
 
  
 
 
 

)1(41 ttt ρρρ −=+

 
ρt+1 = 4 ρt (1− ε )(1− ρt )+ ε 16

5
ρt (1− 2 ρt

2 + ρt
3)

One step error: 0.001 
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Mathematically: 
 
                                + small perturbation 
 
  
 
 
 

)1(41 ttt ρρρ −=+

 
ρt+1 = 4 ρt (1− ε )(1− ρt )+ ε 16

5
ρt (1− 2 ρt

2 + ρt
3)

One step error: 0.001 

Closeness-to-goodness link: this is close 
enough and predictions are reliable. 
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72 They all do the Calculation …. 
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t = 0 
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t = 2 
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t = 4 
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t = 8 
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If you use your model to offer predictions 
you get it completely wrong! 
 

•  You regard things that never happen as 
very likely. 

•  You regard things that happen very often 
as unlikely.  
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And if you use your model to offer bets (or 
insurance policies) on certain events, you 
are losing money! 
 

Probability p on event E: p(E) 
Odds on E: o(E) = 1/p  à pay-out if E occurs 
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And if you use your model to offer bets (or 
insurance policies) on certain events, you 
are losing money! 
 

Probability p on event E: p(E) 
Odds on E: o(E) = 1/p  à pay-out if E occurs 
 

Example: coin 
p or heads is ½.  
Odds on heads is 2.  
If you bet £1 on heads and head occurs you 
get £2 back.  
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“Lower Half” against “Upper Half 

          L                        U 



“Lower Half” against “Upper Half 

Model:  p(U) = 0 and o(U) à ∞ 
System:  p(U) = 1 
 

So U happens with probability 1 and you have to 
pay out infinite gains!  

81 
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Question: is this a special case?  
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Relative Entropy of 2048 initial distributions (t=8) 
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The Pond Casino 
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Nine punters with £1000 each.  
In every round they bet 10% of their wealth 
on events with probability in the interval: 
1st Punter:  [1/2, 1] 
2nd Punter:  [1/4), 1/2) 
… 
9th Punter:  [0, 1/256) 
 
How are they doing?  
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Pu
nt
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 w
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lth
 

Time (Number of rounds played) 
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Result:  
•  7 out of the 9 punters make enormous 

gains! 
•  The casino runs up huge losses. 
 
à Insurance companies …  
 
But: is this just a bad “bad luck event”?  
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Again 
 

Question: is this a special case?  
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Time to bust for 2048 casinos: 
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Conclusion: 
Even though the model is very close to the 
truth, it provides ruinous predictions! 
Hence: If chaotic models have even the 
slightest model error, their capacity to 
make meaningful (and policy relevant!) 
probabilistic forecasts is lost. 
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Conclusion: 
Even though the model is very close to the 
truth, it provides ruinous predictions! 
Hence: If chaotic models have even the 
slightest model error, their capacity to 
make meaningful (and policy relevant!) 
probabilistic forecasts is lost. 
 

The closeness-to-goodness link is 
wrong! 
 
 

 
 



92 

The failure of the closeness-to-goodness 
link gives raise to the hawkmoth effect: 
the smallest deviation in model structure 
leads to completely different results, both 
for deterministic and probabilistic forecasts. 
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Therefore: an Initial Condition Ensemble 
and the closeness to goodness link are 
not an adequate means to deal with 
structural model error.  
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Or: butterflies are pretty; hawkmoths are ugly. 
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Irrelevance? 
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These considerations are relevant in 
some applied contexts.  
 

For instance: UKCP09.  

 
For details see:  
 

Frigg, Stainforth and Smith:  
‘The Myopia of Imperfect Climate Models: 
The Case of UKCP09’, forthcoming in 
Philosophy of Science (December 2013) 
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Reinventing the  
wheel? 
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ρt+1 =α ρt (1− ρt )

Parameter:  

α ∈[0,4]

Feigenbaum’s classical discussion: 
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Time series for different parameter values: 
 

α = 2.95
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Time series for different parameter values: 
 

α = 2.95

α = 3.5
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Time series for different parameter values: 
 

α = 2.95

α = 3.5

α = 4



α

X
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X

103 
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This is a study of parameter variation.  
 

It provides information about what happens 
if we are uncertain about parameter values. 
 

But: it provides no information about what 
happens when we are uncertain about 
the model structure. 
 

What if the true equation is not exactly 
                                  ?                                         ρt+1 =α ρt (1− ρt )
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Overselling  
an example? 
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Recall our conclusion: the closeness to 
goodness link is not an adequate means to 
deal with structural model error.  
 

Why is this a general problem and not just 
a problem of our example?  
 

There is an elaborate mathematical theory 
of structural stability: 
Andronov and Pontrjagin, Peixoto, Palis, 
Smale, Mañé, Hayashi. 
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But:  
 

Stability proofs are forthcoming only for 
two-dimensional flows!  
 

But that is a very special kind of system! 
 
In general the situation is more involved: 
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Axiom A: the system is uniformly hyperbolic. 
Strong transversality condition: stable and 

unstable manifolds must intersect 
transversely at every point. 

Palis and Smale (1970) conjectured that a 
system is structurally stable iff it satisfies 
Axiom A and the strong tranversality 
condition. 
Proofs:  
Mañé (1988) for maps  
Hayashi (1997) for flows. 
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What do Axiom A and 
the strong transversality 

condition mean for 
physical models? 
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What do Axiom A and 
the strong transversality 

condition mean for 
physical models? 

Physical models? What 
are you talking about?  
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But:  
Smale (1966): structural stability is not 
generic in the class of diffeomorophisms on a 
manifold: the set of structurally stable 
systems is open but not dense. 
Smith (2002) and Judd and Smith (2004): if 
the model’s and the system’s dynamics are 
not identical, then ‘no state of the model has 
a trajectory consistent with observations of 
the system’ (2004, 228).  
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Minimal conclusion: shift of the onus of proof!  
 

Those using non-linear models for predictive 
purposes owe us an argument that they are 
structurally stable, not vice versa! 
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Models in action 
 

(ultra-short version) 
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Points to consider:  
•  Time scales 
•  Natural measures  

– but are they structurally stable? 
– do they exist at all (transient systems!) 

•  Aims of modelling: explanation and 
understanding versus exact prediction. 
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Thank you! 


