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Introduction

Background & Motivation

Increased Complexity on the Material & Structural System level

* images courtesy of Neri Oxman.

.Contemporary Applications

Functionally Graded Materials

(source: MIT Media Lab)
Pedestrian Vibrations

Millennium Bridge
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Introduction

Background & Motivation

Deteriorating Infrastructure

Ageing

Infrastructure demographic
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Introduction

Quest for Sustainability

(source: xkcd blog)
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Introduction

Engineering Efficient Infrastructure

Repairing a Defective System
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Introduction

The importance of Modeling
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Structural Health Monitoring (SHM)

Structural Health Monitoring

Sensory feedback via SHM systems.

Force Displacement Strain and tilt

Acceleration Meteo Data from GPS
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Structural Health Monitoring (SHM)

System Identification in SHM

Link between acquired data & modeling of structural behavior?

System Identification
Developing or improving the mathematical representation of a physical system using
experimental data.

vibration
response

ambient
excitation

Structural 
identificationand/or

known applied forces

Model

Frequency Domain
H(ejωt)

Modal space
ω, ζ, Φ

Time domain
x[t] = Ax[t-1]+Bu[t]
y[t] = Cx[t]+Du[t]

analytical or numerical
model

excitation dynamic response

Inverse Problem  (structural model is obtained from experimental data) 

Forward Problem (analytical/numerical model exists a priori)
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Structural Health Monitoring (SHM)

Reality Check

Challenge #1: Fusion of heterogeneous data, sensor noise
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Structural Health Monitoring (SHM)

Reality Check

Challenge #2: Lack of a-priori knowledge of the system itself

Structural system is characterized by
parameter uncertainty
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Incorporating Uncertainties

Optimal Bayesian Solution

The Task: How to estimate x given partial, noisy observations of the response y?

Predict

Assuming the prior p(x0) is known and that the required pdf p(xk−1|y1:k−1) at time k−1 is
available (Chapman-Kolmogorov equation):

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

Update

Consequently, the prior (or prediction) is updated using the measurement yk at time k(Bayes
Theorem):

p(xk|y1:k) = p(xk|yk,y1:k−1) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
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Incorporating Uncertainties

Bayesian Approximation

Particle-based Bayesain approaches - Working principle

 

  

prior mean and 
variance 

posterior mean 

and variance 

Update (F) 

Predict (H) 

Chatzi, E. N. and Smyth, A. W. (2012), “Particle filter scheme with mutation for the estimation of

time-invariant parameters in structural health monitoring applications”, Journal of Structural Control and

Health Monitoring.
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Incorporating Uncertainties Tackling Model Uncertainty

Application #1: Treating model Uncertainty in real-time

On Line Parametric Identification of a Non-Linear Hysteretic System with
Model Uncertainty

F. Tasbihgoo et al. / International Journal of Non-Linear Mechanics 42 (2007) 99–117 109

Fig. 11. Overview of the 2DOF non-linear “joint” experimental test setup; (a) Overview; (b) non-linear 2DOF “joint”.

Fig. 12. Solid model and detailed view of the 2DOF non-linear experimental test setup. Part (a) is the solid model design of the test setup, and part (b) is the
exploded view of the non-linear 2DOF “joint”.

force (dash-dot line) with the measured force (solid line) for the
axial and torsional forces respectively. Parts (c) and (d) show
the phase-plot comparison of the relative displacement vs. the
axial restoring force, and the relative rotation vs. the torsional
restoring force, for the x and ! directions, respectively.

5.3. Artificial neural network

5.3.1. Identification and verification
The neural network model used to represent the experimen-

tal “joint” component, had the same network architecture dis-
cussed in Section 2.4 and shown in Fig. 4, with 40 neurons in
the hidden layer. The optimum weights and biases of the net-
work were obtained through the backpropagation algorithm, as
discussed in Section 2.4.2.

Fig. 17 shows the verification results for the neural network
identification with the experimental data sets, where parts (a)
and (b) show the time-history comparison of the identified force
(dash-dot line) with the measured force (solid line) for the
axial and torsional forces, respectively. Parts (c) and (d) show
the phase-plot comparison of the relative displacement vs. the
axial restoring force, and the relative rotation vs. the torsional
restoring force, for the x and ! directions, respectively.

5.3.2. Validation
For demonstrating the generalization capability of the neural

network model representation of the non-linear 2DOF “joint”
element, the identified model was used with the validation data
set (as described in Section 5.2.2) to predict the non-linear non-
conservative forces. Fig. 18 shows the validation results for the
neural network identification with the experimental data set not
used in the identification, where parts (a) and (b) show the time-
history comparison of the identified force (dash-dot line) with
the measured force (solid line) for the axial and torsional forces,
respectively. Parts (c) and (d) show the phase-plot comparison
of the relative displacement vs. the axial restoring force, and
the relative rotation, vs. the torsional restoring force for the x
and ! directions, respectively.

6. Discussion

Derivation and evaluation of the data-based model-free rep-
resentations of a generic non-linear non-conservative 2DOF

“joint” system were discussed throughout this paper. The mod-
eling techniques were first calibrated with synthetic data sets
and then validated through experimental data sets. The results
in Sections 3 and 4 demonstrated the capabilities of these

Experimental Setup at USC

E.N. Chatzi, A.W. Smyth and S.F. Masri, ”Experimental application of on-line parametric identification for

nonlinear hysteretic systems with model uncertainty”, Journal of Structural Safety, Structural Safety, Vol.

32, No. 5. (24 September 2010), pp. 326-337.
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Incorporating Uncertainties Tackling Model Uncertainty

Nonlinear Hysteretic Joint

Non typical hysteretic behavior
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A physical model of the system is formulated on-the-fly:

ż = B1⊕{c1 |x|n1 ẋ(sgn(xẋ)+1)/2+ c2 sinh(a2xsgn(ẋ)) ẋ}, l = 5
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Incorporating Uncertainties Field Implementation: Tall Tower

Application #2: Actual Large Scale Structure

Case Study - Tall Tower Structure

E. Chatzi, C. Fuggini, “Structural identification of a super-tall tower by GPS and accelerometer data fusion using a multi-rate Kalman filter”, 3th

International Symposium on Life-Cycle Civil Engineering (IALCCE 2012), October 3-6, 2012.
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Incorporating Uncertainties Field Implementation: Tall Tower

Quantifying Uncertainty

Challenge: How to Quantify Uncertainty through efficient computation?

Motivation
The simulation of dynamic response through FE models requires excessive
computational resources particularly for complex, large structures. The problem is even
more pronounced when:

the structural system is characterized by parameter uncertainty

detailed geometrical descriptions are adopted

nonlinearities are taken into account

FE model

excitation dynamic response

This is especially important for the case of inverse problem formulations or
Reliability Analyses where a large number of forward runs is necessary.
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The Metamodeling Problem

One Step Further - The Metamodeling approach

 0.0             2.0             4.0             6.0             8.0            10.0            

1.0

0.5 

0.0            

σα

f(σα)

                   0.16          0.18            0.2            0.22           0.24            

1.0

0.5 

0.0            

f(σy)

σy (GPa)           

                  160            180             200            220           240            

1.0

0.5 

0.0            

f(E)

E (GPa)           

Random input parameters

E
xc

it
at

io
n

                    4                8               12              16              20            

Time (s)

                    4                8               12              16              20            

Time (s)

...

A
cc

el
er

at
io

n 
(m

/s
2 )

Identify a reduced order model 
that may simulate the dynamic behaviour

of the detailed FE model

Time history loading responses
M

ec
ha

ni
ca

l &
 g

eo
m

et
ri

c
pr

op
er

ti
es

E
xc

it
at

io
n

pr
op

er
ti

es

FE model

Problem definition

Consider a structural system represented by a numerical model M characterized by
uncertain input parameters ξ = [ξ1,ξ2, . . . ,ξM ]T with known joint pdf f (ξ ). The
dynamic response of M to a given input excitation x[t,ξ ] will also be a random variable:

y[t,ξ ] = M (x[t,ξ ],ξ ), t = 1,2, . . . ,T

A metamodel M̃ must be able to predict and/or simulate the detailed numerical model
results in a computationally inexpensive way and with sufficient accuracy.

M. Spiridonakos and E. Chatzi, “Metamodeling of Structural Systems through Sparse Polynomial Chaos Expansion”, Proceedings of International

Conference on Noise and Vibration Engineering, September 2012, Leuven, Belgium.
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The Metamodeling Problem

PC-ARX Models

Polynomial Chaos AutoRegressive with eXogenous input (PC-ARX) models

AR part
︷ ︸︸ ︷
y[t]+

na

∑
i=1

ai(ξ ) · y[t− i] =

X part
︷ ︸︸ ︷
nb

∑
i=0

bi(ξ ) · x[t− i]+e[t], e[t]∼NID(0,σ2
e )

AR/X model parameters are modeled as random variables projected on a
polynomial chaos basis, in order to enable uncertainty propagation.

ai(ξ ) =
p

∑
j=1

ai, j ·φd( j)(ξ ), bi(ξ ) =
p

∑
j=1

bi, j ·φd( j)(ξ )

ai, j,bi, j: unknown deterministic coefficients of projection
φd( j): basis functions orthonormal w.r.t. the joint probability density function of ξ

20 / 43



The Metamodeling Problem

Implementation on a 5 storey Nonlinear Frame

1 2
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16 kN/m
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16 kN/m

Simple Implementation Example

The described framework is implemented for the simulation of the
response of a five-storey shear frame, subjected to a (known)
dynamic input in the form of earthquake excitation.

The frame is described by a nonlinear material law, allowing for
the sections to move into the post-yield region which causes
nonlinear behavior to occur.

We consider the following input parameters:

Input Vertical Horizontal
parameter elements elements
Density (kg/m3) 7850 7850
Poisson ratio 0.29 0.29
Young moduli (GPa) U (190,210) U (190,210)
Yield stress (MPa) U (200,500) U (200,500)
Cross section area (m2) U (0.04,0.09) 0.0625
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The Metamodeling Problem

Implementation on a 5 storey Nonlinear Frame

One of the recorded acceleration instances for the El Centro earthquake∗ has been utilized as
ground excitation:
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causing the observed shear stress vs top floor displacement response.
The curve shown here corresponds to the first simulation experiment (with ξ 1) and
t = 1,2, . . .250. ∗ downloadable at: http: //peer.berkeley.edu/peer ground motion database
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The Metamodeling Problem

Implementation on a 5 storey Nonlinear Frame

20 simulations are conducted using a detailed structural model. The ANSYS finite element
software has been used for the reference simulations.

The derived functional representation

Polynomial expansion of b4(ξ ) model parameter onto the input space
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The Metamodeling Problem

Implementation on a 5 storey Nonlinear Frame

In order to validate the workings of the metamodeling framework the performance of the
identified PC-ARX(10,10) metamodel is tested for the prediction and simulation of the
dynamic response of the FE model subjected this time to the Pacoima Dam earthquake.2 4 6 8 10 12 14
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y[t] ŷ[t|t− 1] ȳ[t]

0.7836 % prediction error
3.7585 % simulation error

5000 times reduced simulation time
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The Metamodeling Problem

Running Field ProjectCurrent Implementation 
Structural Identification for Condition Assessment  
of Swiss Bridges, Research Grant funded by the Federal Roads Office 
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Multiscale Modeling of Engineering Systems

Structural Assessment of Complex Structures

Beyond Reduced Order Models it is
often desirable to maintain model
refinement at a reduced computational
toll

Multi - Phase Structures

Masonry structures constitute a
large portion of the existing
building stock

Novel structures, largely based on
composite & polymer materials are
continuously emerging
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Multiscale Modeling of Engineering Systems

Implementing novel technologies in masonry retrofitting - SNSF project

Modeling Challenges

Complex behaviour of the constituents - Crack propagation

Material parameters hard to identify

Standard FEM modeling procedures are too expensive
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Multiscale Modeling of Engineering Systems

Structural Assessment of Complex Structures

Structural
Model

MultiScale
Modeling

Micro
Modeling

Finite
Elements

Solid

Surface

Beam
Column

Macro
Modeling

Beam
Column

Super-
elements

Spread plas-
ticity models

Concentrated
plasticity models

Distributed plas-
ticity models

Spread plas-
ticity models

Concentrated
plasticity models

Walls

Wooden Frames

Foundation-soil

Precision

Generalization

Speed

Abstraction
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Multiscale Modeling of Engineering Systems Micro to Macro transition

The Multiscale Finite Element scheme

Given a heterogeneous deformable body (flaws, inclusions, material
layers)
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Multiscale Modeling of Engineering Systems Micro to Macro transition

The Multiscale Finite Element scheme

And an accompanying fine mesh (standard FE approach)
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Multiscale Modeling of Engineering Systems Micro to Macro transition

The Multiscale Finite Element scheme

Solve this mesh instead (multiscale approach)
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Multiscale Modeling of Engineering Systems Micro to Macro transition

MultiScale FEM
MultiScale FEM

Ω Ω̃

Find a map M(Ω) → Ω̃

For each coarse grid block n do
For each Coarse node i

? L(φin) = 0 and bcs
End For

End do

Downscale computations

Re-evaluation of the mapping is required in a nonlinear analysis

Use the Hysteretic FE in the micro-scale

Proposed Approach:

Couple the Multiscale FE approach with a Hysteretic FE Formulation
33 / 43



Multiscale Modeling of Engineering Systems Hysteretic Finite Element Formulation

The hysteretic formulation of Finite Elements

Considering the additive decomposition of the strain vector

{ε̇}= {ε̇e}+
{

ε̇
pl
}

An evolution equation for the plastic part of total strain is derived

{
ε̇

pl
}
=

∣∣∣∣
Φ̃
Φ̃0

∣∣∣∣
N (

β + γsgn
(
{ε̇}T {σ}

))
[R]{ε̇}

Triantafyllou, S.P., Koumousis, V.K. (2012). “A Bouc-Wen Type Hysteretic Plane Stress
Element”, Journal of Engineering Mechanics, 138 (3), pp. 235-246

S. Triantafyllou and E. Chatzi (2013), “A novel Hysteretic Multiscale Finite Element Method

for Nonlinear Dynamic Analysis of Heterogeneous Structures”, 11th International Conference

on Structural Safety & Reliability
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Multiscale Modeling of Engineering Systems Applications

Textile Reinforced Masonry Wall

Mortar Stone

Young’s modulus [MPa] 3494 20200

Poisson’s ratio 0.11 0.2

Plasticity Mohr-Coulomb von-Mises

Friction angle [deg] 21.8 -

Cohesion [MPa] 0.1 -

Yield Stress [MPa] - 69.2

A hysteretic multiscale formulation for the nonlinear dynamic analysis of composite materials 17

elastic properties of the matrix and the inclusion respec-
tively. Furthermore, σy and c stand for the yield stress and
the linear kinematic hardening constant. For both materials,
the following Bouc-Wen constants are considered, namely
n = 6, β = 0.5 and γ = 0.5. A displacement control mono-
tonic analysis is performed, with the maximum controlled
displacement (centroidal node at the tip) set to uc = 10 cm.

The derived load-displacement path for both the homo-
geneous and heterogeneous cases are presented in Fig. 14(a)
and 14(b) respectively. In the first case, both the linear bound-
ary condition (HMsFEM-L) and periodic boundary solution
(HMsFEM-P) coincide with the exact FEM solution. Differ-
ences emerge in the heterogeneous case; however, the av-
erage error with respect to the exact (FEM) solution is less
than 1.5% in both cases.

These differences are observed during the inelastic regime
of the cantilever response, with the HMsFEM-L solution be-
ing stiffer than the exact one and the HMsFEM-P solution
being more flexible than the exact one. In this case, the error
introduced by the linear boundary condition assumption are
reduced, with respect to the case examined in Example 1.
However in the case examined herein the actual cantilever
deformed configuration can be adequately reproduced with
a piece-wise linear displacement distribution, provided that
the number of coarse elements along the length of cantilever
is sufficient enough.

Next, a dynamic analysis is performed considering a vary-
ing amplitude sinusoidal excitation of the following form

T (t) =
260
8

t sin
(
3π

/
2t
)

Only the heterogeneous case is examined in this loading
scenario. To further examine the efficiency of the proposed
scheme, the structure is driven well beyond its yield limit.
Also, an average acceleration Newmark scheme is imple-
mented in all cases with a constant time step dt = 0.0002
sec. The load is applied for a total duration of T = 10 sec,
thus the total number of requested incremental steps is equal
to Nsteps = 50000.

A lumped mass matrix approach is implemented con-
sidering the following densities, namely γm = 1KN

/
m3 and

γi = 0.1KN
/

m3 for the matrix and the inclusion respectively.
The time history of the tip vertical displacement for the two
formulations is presented in Fig. 15(a) where in the mul-
tiscale case both linear (HMsFEM-L) and periodic bound-
ary (HMsFEM-P) conditions are considered. Similar to the
monotonic case, the solution derived with linear boundary
conditions is slightly stiffer. This is evident during the last
cycle of the cantilever response where severe inelastic de-
formations occur. In both cases however, the difference be-
tween HMsFEM-L and the exact solution is less 1.5%.

The corresponding load displacement paths for the mul-
tiscale and FEM solution are presented in Fig. 15(b). As far

3
.1

 m

0.40 m

0.05 m

Stone CompositeMortar

Mass

2.5 m

(a)

Micro-Element 19

(b)

Fig. 16 (a) Cantilever masonry Wall (b) Finite Element mesh

as the analysis time is concerned while the standard finite el-
ement procedure concludes in the proposed hysteretic mul-
tiscale scheme concludes in 432 minutes. Although the time
integration parameters implemented on this example are not
necessary for the accurate evaluation of the structural re-
sponse, they do yield a computationally intensive case, thus
revealing the advantages of both the hysteretic scheme and
the derived multiscale formulation.

5.3 Masonry wall under earthquake excitation

In this example, the cantilever masonry wall presented in
Fig. 16(a) is examined. The wall consists of layers of ma-
sonry and mortar, while a layer of composite reinforcement
is considered at its exterior. An additional mass of 10 tn is
considered at the top of the wall.

The elastic material properties considered for each of
the constituents are presented in Table 1. Isotropic elastic
constants are used for both stone and mortar [47]. Accord-

Composite Material)

Young’s modulus [MPa]
E11 = 54000 E22 = 53200 E33 = 53200
E12 = 53200 E23 = 54000 E23 = 54000

Poisson’s ratio ν12 = 0.14 ν23 = 0.2 ν13 = 0.2
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Multiscale Modeling of Engineering Systems Applications

Textile Reinforced Masonry Wall

Results derived from the HMsFEM formulation are compared to classical FEM

75% Reduction in Computational Time

The plastic strain components are readily derived as part of the solution
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The Broad Picture
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The Broad Picture
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The Broad Picture
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The Broad Picture
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The Broad Picture
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The Broad Picture

The Broad Picture

A gathering of Competences
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