
Validation of multi-physics models:  
from the material scale to the boundary value problem 
Anna Pandolfi, Politecnico di Milano, Italy 



Multi-physics & Multi-scale Challenges in Computational Mechanics 

Two representative examples  
• Faults and fractures permeated of water in geomechanical materials 
• Collagen fiber architecture and electric activity in biological tissues  
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• Equations governing physical phenomena are well known 
• Linear and angular momentum balance  
• Mass balance 
• Energy balance 
• Thermodynamics principles… 

• Modelling, based on weak or strong assumptions,  typically involves  
• geometry, suggested by the particular shape of a body (structure: beam, plate, shell…)  
• boundary conditions and interactions with surrounding bodies 
• material, suggested by experimental tests on materials 

 
• Modelling requires the assessment of the correspondence with the real world (validation).  
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Material models can be roughly classified in 
• Phenomenological models: Experimental behaviors are translated into mathematical equations 

governed by generic parameters, calibrated to best fit experimental data.  
1. Pros. Easy implementation, moderate computational cost.  
2. Contra. Unable to capture response under various loads for the same parameters.  

• Microstructural models: The main characteristics of the microscopic organization of the material are 
explicitly included in the model.  

• Pros. Model parameters possess a direct physical meaning and remain the same for multiple 
loadings. The model is predictive. 

• Contra. Heavy implementation, high computational cost.    
 

• The nowadays challenge is on microstructural models (see metamaterials…) 

Material Modelling 
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Fracking: inelastic hydro-mechanical coupling in geomechanics  

• Fractures and discontinuities 
in natural rocks can evolve 
due to the action of gravity, 
superposed localized pressure, 
and shear tractions  

• Fractures are related to 
porosity and permeability of 
rocks 

• Actual great interest: damage 
induced by hydraulic 
stimulation in oil/gas 
reservoirs in view of 
increasing the reservoir 
production 

• Resort to a multiscale Porous 
Brittle Damage Model   
[Pandolfi et al, JMPS, 2006] 
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• Particular class of microstructures, consisting of nested families of equi-spaced cohesive faults bounding elastic (or 
any other) matrix material.  

• Each family characterized by an orientation N and a spacing L (microstructural feature of the material that derives 
from optimality conditions on the system energy). 

• The average macroscopic strain tensor admits the additive decomposition  
[De Bellis et al, EG, 2016] 

 
 

 
 
 
 
 
 
 

 
 

Kinematics of faults (linearized version, in total 6 mechanical parameters) 

Displacement jump 
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Variational characterization within time discretization 

Hyperlastic matrix (E, ν) 

 

Cohesive micro-faults (Gc, Tc)  

 

Frictional sliding (µ) 

 

Orientation (Rankine or Mohr-Coulomb) (Tc, µ)  

 

Spacing (L0) 

 

 

[De Bellis et al, EG, 2016] 
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Scale parameter L0, extension to porous material permeability and porosity 
∆

σ 

∆σ 

p 

∆σ 

• Small L0 : many distributed faults 

• Large L0 : a few localized faults 

[De Bellis et al, EG, 2016] 
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• The global failure mechanism derives from the sliding within microstructures. 
• Microscopic cracks oriented almost orthogonally the macroscopic shear band.  

 
 
 
 
 

 
 

• No explicit modelling of fractures is requested by the approach.  
• Macro-cracks are natural outcomes of the calculation defined by the 

distribution of the damaged zone.  

Interpretation of the global failure mechanism 

Inside the damage 

Displacements NOT magnified 
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Hydro-mechanics porous media equations in linearized kinematics 

• Linear momentum balance 
 

• Continuity equation (fully saturated porous media, incompressible fluid and incompressible soil particles), 
n porosity,       volumetric strain 
 
 

• Terzaghi’s effective stress principle, p pore pressure 
 

• Constitutive relations 
 

• Constitutive relation for fluid flow in porous media (Darcy law), h hydraulic head, k  permeability tensor 
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Coupled field problem solution strategy 

• Two field equation: linear momentum balance and continuity equation 
 
 
 

• Weak form (unknowns u and p, introduce the test functions v and η)  
 
 
 
 

• After spatial discretization obtain the matrix form (similar to the consolidation equations) 
 
 
 

• which is solved with a staggered approach (explicit in u, implicit in p). 
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Material point: validation of the coupled behavior 1 

Inada sandstone (Kiyama et al, 1996) 
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Material point: validation of the coupled behavior 3 

• Experiments on berea 
sandstone  
[Morita et al., 1992] 
 

• Axial and radial stress strain 
curves 

• Porosity and permeability in 
axial direction curves 
 
[De Bellis et al, JMPS, 2017] 
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Boundary value problem 1. Dry compression of a block in plane strain 

• Compressed block of sandstone with a stiff frame 
system applying plane strain boundary conditions 
[Yumlu & Ozbay, IJRMMS&G, 1995] 

• Specimen size 30x30x10 mm 
• Consider two confinement pressure 

Nodes 40 K 
10-node Tetrahedral Elements 30 K 

Plane strain 
direction 

E [GPa] 28 
ν 0.25 

Tc[MPa] 83 
Gc[N/mm] 100 

φ [Deg] 52 
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Boundary value problem 1. Validation with global curves and failure pattern 

5MPacσ =

8MPacσ =

Experimental Numerical 
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Boundary value problem 2. Triaxial loading of a cement block 

Experimental data on a compressed block of cement pressurized with a fluid in a small 
cylindrical cavity at the center of the specimen [Athavale & Miskimins, SPE, 2008] 
 sz = 24.2 MPa 
 sx = 17.3 MPa 
 sy = 10.4 MPa 
 Max fluid pressure = 20 MPa 

Nodes 38,000 
10-node Tetrahedral 

Elements 28,000 Experimental output 
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Boundary value problem 2. Validation with failure patterns 

YZ plane (experiment) YZ plane (simulation) 

XY plane (simulation) 

• Missing strength properties estimated from the literature. Assume Gc = 100 N/m,  Tc = 5 MPa, and φ = 31 degrees. A 
posteriori damage variable (0 no damage, 1 full damage) 

 

[De Bellis et al, JMPS, 2017] 
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Boundary value problem 2. Validation with global curves 

670 

• Faults form according the Mohr–Coulomb 
criterion.  

• Colored lines: aligned along the fault normal, 
colored as the magnitude of the sliding jump. 
 

Numerical versus experimental results 
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• Most material and geometry 
data are unknowns 

• Only the relevant feature of 
the fracking process are 
described  

• The elementary fracking unit is 
the cluster. Requested 
– Orientation 
– Diameter D 
– Spacing L 
– Cluster length h ≤ L 

Boundary value problem. A simulation of a fracking process 
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Example of a 10 cluster fracking process in a horizontal well 

Reservoir size: 3.5 x 2.5 x 2.5 km  

Adopted finite element discretization in the central 
zone where the injections take place 
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Simulation results: fracture volume and fracture surface 

Fracture volume history and fracture surface history, together with the applied fluid pressure 
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Permeability change after 10 fracked clusters 
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Longitudinal effective stress after 10 fracked clusters 
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Active (deformable under an electric stimulus) bio-tissues 

• Biological active tissues: heart, skeletal muscle, gastro-intestine, eye’s iris… 
• Show the ability to develop contractions, producing the mechanical forces necessary to the organ’s function. 
• Contractions originated by an electric potential due to transmembrane (K-, Na-) and intracellular currents (Ca++) 

Heart Muscles Intestines Eye’s iris 
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Anisotropy associated to spatial dispersion of collagen fibers 

• Fiber reinforced tissues 
• Dispersed fibers with statistical properties 
• Presence of two distinct populations of fibers 

Bovine pericardium (BP)  
(photomicroscopy, optical analysis) 

Small intestine submucosa (SIS) 
Pulmonary aortic valve (PAV) 

[Sacks et al. 1999] 
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Mechanical passive behavior of muscles: anisotropy, hysteresis, viscosity 

Engelmayr 
et al 2008 

Anisotropy 
effects 

Hysteretic 
behaviors 
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• Spatial distribution of muscular 
fibers at the mesoscopic level 

• In healthy physiological 
condition, observe small 
dispersion of fibers following a 
Gaussian profile  

• In some pathological cases 
observe large and less regular 
dispersion  

• Fiber dispersion characterize 
both the response of the 
material in both passive and 
active behaviors 

Distributed fibers: healthy to diseased 

Erikkson et al, 2013 
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• Prototype of an exciting dynamic system. Based on two variables: 
• A voltage-like variable ϕ having cubic nonlinearity that allows 

regenerative self-excitation via a fast feedback 
• A recovery variable w having a linear dynamics that provides a 

slower negative feedback.  
• The cell membrane consists of three components: 

– capacitor Cm representing the membrane capacitance; 
– nonlinear current-voltage device for the fast current i, 
– resistor gL, inductor and battery EL in series for the recovery 

current w. 
• Governing equations: 

Active behavior: simplified FitzHugh-Nagumo model of excitation 
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• Linear and angular momentum balance: V velocity, P first Piola-Kirchhoff stress tensor, F deformation gradient, ρ0 material 
density (plus corresponding b.c.): 
 

 
• Energy balance: U internal energy, D dielectric displacement or induction, ϕ  electric potential, E electric field: 

 
 

• Electric potential dynamics through the cell membrane described by a diffusion-reaction equation, combined with intercellular 
coupling in cardiac tissue. Q is the conductivity tensor [Rogers & McCulloch, 1994; Aliev & Panfilov, 1996]: 
 

 
 

• Recovery current circulation equation (L inductance, R resistance, ϕ0  potential gain): 
 
 
 
 

Electro-mechanics balance equations in finite kinematics 
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• Active deformation can be easily introduced in the mechanical 
framework under the assumptions of 

• Multiplicative decomposition of the deformation  gradient: 
 
 

• The free energy density decomposes in elastic and inelastic parts 
with separation of the arguments 
 
 

• Frame indifference considerations imply dependence on C = FTF 
 
 

• Constitutive laws 
 
 

 

Finite kinematics approach 

Lagrangian formulation [Dorfmann & Ogden, 2006; 
Cherubini et al, 2008; Rosato & Miehe, 2010; Ask et 
al, 2010, 2012, 2013]  

The inelastic (active) part accounts for the 
deformation of the tissue due to the electric field. 
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Constitutive modeling: active stress versus active strain  

• Active stress: usual approach in cardiac electro-mechanics (McGarry et al 2010) 
• Active strain: described by means of eigen-deformations (Ambrosi et al 2011) 
• A definition of active stress consistent with active strain can be derived through thermodynamics arguments that 

allow for the definition of all the constitutive relationships (Gizzi et al, 2015): 
 
 

• Advantages: 
• The general structure of the constitutive equations will be extended easily to any mechanical behavior, 

accounting for viscosity, damage, anisotropy, growth;  
• Other coupled phenomena, such as electro-chemical diffusion, are easily accounted for (Yang et al, 2006) 

 
• Convenient expression of elastic strain energy density for fibrous tissues through C’s invariants (a is a preferential  

fiber orientation an                     ) to model the passive behavior:  
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• Probability density function of the orientation, with normalization and 
symmetry properties 
 

 
 
• Amount of fibers in the range  

 
 
• Average of a function f (a) over the unit sphere is  

 
 
• Expression of the single fiber strain energy density 

Passive behavior: statistical distribution of the reinforcing fibers 

November 4, 2019 Anna Pandolfi - Validation Workshop 

33 



• Anisotropic strain energy of the fiber distribution 
 

 
• Closed forma approximations of the energy allows for the analytical derivation of stress and elasticity tensors. Among others: 
• Generalized structure tensor model (GST) [Gasser et al, 2006] 

 
 

 
• Variance model (V)  [P & Vasta, 2012] 

 
 

 
 

• The models have been studied for von Mises distributions. 
• Both models show a good performance for fibers with strongly aligned orientations 
• V model performs better for more dispersed sets of fibers  

 
 
 

Passive behavior: approximations of distributed fiber models 
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F33 = 1.1 

F33 = 1.2 

F33 = 1.1 

F33 = 1.2 

Verification of the approximated material models with analytical results  

Assume a von Mises type distribution, characterized by a unique dispersion coefficient b. Compare approximations with 
exact integration [P. & Vasta 2012] 

F33 = 1.8 
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• Extend the statistical treatment to active behavior. The generic orientation a (and thus the tensor A) is an 
aleatoric variable, thus both elastic and inelastic energy depend are aleatoric 
 
 

• Want to generalize the inelastic free energy adopted for a deterministic orientation  
[Gizzi et al, 2015] 
 

 
 

• And assume an additive decomposition of the permittivity tensor 
 
 

• We begin by defining the active deformation gradient Fa, making that strong assumption that the active 
mapping excludes rigid rotations and leads only to proper deformations (length and angle changes).  
 

[Pandolfi et al, 2016] 

Ansatz: active behavior of distributed fiber models 
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• Assume the following expression for the directional deformation gradient  (single fiber): 
 
 
 
 
 
 
 
 
 
 

• The active deformation gradient  for the fiber distribution is the integral over the unit sphere 
 
 

• It retains  a deterministic nature, though derived from aleatoric microstructural contributions. 
 

Kinematics of the active deformation 

Generic Aleatoric  
Fiber Direction 

Deterministic 
Electric Field Direction 

𝐦𝐦 =  
𝐄𝐄
𝐄𝐄  
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• Validation of the proposed active model against equi-biaxial tests on cardiac tissues showing non-zero stress at 
null strain (experiments Sommer et al, 2015, simulations Pandolfi et al, 2016) 

Validation of the material model and predictability 
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Expected mechanical response (E intensity and angle β with fibers)  

Electric 
field 

intensity 

Electric 
field 
orientation 

Erikkson et al, 2013 

Pandolfi et al, 2013 
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MRI of colon portions – VMTK toolkit 
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Computational FE mesh 
~ 10K nodes 
~ 40K elements 

Numerical model and fiber orientation 

Longitudinal fibers (external) 

Circumferential fibers (internal) 
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• Experimental data on porcine intestine biaxial test [Bellini et al., JMBBM 2011] 
• Loaded circumferential (left) and longitudinal directions (right) with different stretch ratio on a portion of 

jejunum. 

Elastic material properties from literature 
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Calibration of the passive elasticity 

K  
[kPa] 

m1 
[kPa] 

m2 
[kPa] 

k4 
[kPa] 

k42 
[-] 

k6 
[kPa] 

k62 
[-] 

z  
[kPa s] 

h  
[kPa s] 

5.5 1. 1. 55. 56. 20. 29. 5.5 1.5 
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Electro-active simulation 
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• Coupled problems represent the forefront of modern computational mechanics 
• Computational methods require the definition of models and of space/time discretization  
• Models include geometry, boundary condition and, especially, materials 
• Modelling requires validation against real world data 

 
• Many materials explored with computational methods are characterized by complexity 

• Multiple internal scales  
• Spatial distribution of micro-components (faults, fibers, voids, …) that define a micro-structure 
• Behavior of complex materials differentiate according to the loading 

• Validation of complex materials is complex (comparison with multiple tests to assess the correct modelling of the 
microstructure)  

• Validation of coupled models is in general difficult because coupled experiments are hard to be performed and usually 
only a few data are recorded. 
 
 
 

Summary and conclusion 
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